QA )

Call WinForms on
Multiple Threads

Use the ISynchronizelnvoke interface to marshal calls to the correct thread, and put
HTML on the clipboard that other apps can use.

Technology Toolbox

(J VB.NET

o c#

(1 SQL Server 2000
(2 ASP.NET

a XML

o VB6

® Other:
VB5
WinForms

Go Online!

Use these Locator+ codes at
www.visualstudiomagazine.com
to go directly to these related
resources.

Download

VS03020A Download the code for
this article. Itincludes the
Synchronizer project, which
contains a WinForms client that
uses a Calculator class employing a
generic implementation of
ISynchronizelnvoke; and the
HtmIClip project, which contains
routines for sending HTML to the
clipboard. °

Discuss

VS0302QA_D Discuss this article in
the C# forum.

Read More

VS0302QA_T Read this article
online. Itincludes Listing A.

VBO0106AP_T Ask the VB Pro, “Soup
Up Office VBA," by Karl E. Peterson

VB9812AP_T Ask the VB Pro,
“Verifying Internet Access,” by Karl
E. Peterson

VB9712AP_T Ask the VB Pro, “Copy
and Paste with RichTextBox,” by
Karl E. Peterson

40

¢ Call WinForms on
Multiple Threads

My WinForms application has a worker thread
that updates the main windows. The documen-
tation warns against calling the form on multiple
threads (why?), and indeed, it crashes occasion-
ally if T do. How can I call methods on the form
from multiple threads?

A:

Every WinForms class that derives from the
Control class (including Control) relies on the
underlying Windows messages and on a message
pump loop to process them. The message loop
must have thread affinity, because messages to a
window are delivered only to the thread that
creates it. As a result, you can’t call message-
handling methods from multiple threads, even if
you providesynchronization. Most of the plumb-
ing is hidden from you, because WinForms use
delegates to bind messages to event-handling
methods. WinForms convert the Windows mes-
sage to a delegate-based event, but you still must
be aware that only the thread that creates the
form can call its event-handling methods, be-
cause of the primordial message loop. If you call
such methods on your own thread, they’ll ex-
ecute on it instead of on the designated form
thread. You can call any methods that you know
aren’t message handlers (such as your own cus-
tom methods) from any thread.

The Control class (and the derived classes)
implement an interface defined in the System.-
ComponentModel namespace—ISynchronize-
Invoke—to address the problem of calling
message-handling methods from multiple threads:

public interface ISynchronizelnvoke
{
object Invoke(Delegate
method,object[] args):
IAsyncResult BeginInvoke(Delegate

VISUAL STUDIO MAGAZINE *

by Juval Lowy and Karl E. Peterson

method,object[] args):
object EndInvoke(IAsyncResult
result);
bool InvokeRequired {get;}
}

ISynchronizelnvoke provides a generic, standard
mechanism to invoke methods on objects resid-
ing on other threads. For example, the client on
thread T1 can call ISynchronizelnvoke’s Invoke()
method on an object if the object implements
ISynchronizelnvoke. The implementation of In-
voke() blocks the calling thread, marshals the call
to T2, executes the call on T2, marshals the
returned values to T1, then returns control to the
calling client on T1. Invoke() accepts a delegate
targeting the method to invoke on T2, and a
generic array of objects as parameters.

The caller can also check the InvokeRequired
property, because you can call ISynchronizeln-
voke on the same thread as the one the caller tries
to redirect the call to. The caller can call the object
methods directly if InvokeRequired returns false.

For example, suppose you want to invoke the
Close method on some form from another thread.
You can use the predefined MethodInvoker del-
egate, and call Invoke:

Form form;

/* obtain a reference to the form,
then: */

ISynchronizelnvoke synchronizer;

synchronizer = form;

if(synchronizer.InvokeRequired)
{
MethodInvoker invoker = new
MethodInvoker(form.Close);
synchronizer.Invoke(invoker,null);
}
else
form.Close();

FEBRUARY 2003 + www.visualstudiomagazine.com



/ VB5, VB6 ¢ Prepare HTML for the Clipboard

String) As String

Dim Data As String

Dim nPos As Long

Const Description As String = _
"Version:1.0" & vbCrLf & _
"StartHTML:aaaaaaaaaa" & vbCrLf & _
"EndHTML:bbbbbbbbbb" & vbCrLf & _
"StartFragment:ccccccccec" & vbCrlf & _
"EndFragment:dddddddddd" & vbCrLf

Const FragmentStart As String = _
"<!--StartFragment-->"

Const FragmentEnd As String = _
"¢!--EndFragment-->"

Const Fmt As String = "0000000000"

' Add the starting and ending tags for the

Public Function HtmlDescribed(ByVal Fragment As _

nPos = InStr(1l, Fragment, "</body", _
vbTextCompare)
Select Case nPos
Case 0
Fragment = Fragment & FragmentEnd & _
vbCrLf & "</body></html>"
Case Else
Fragment = Left$(Fragment, nPos - 1) & _
FragmentEnd & Mid$(Fragment, nPos)
End Select

' Build the HTML given the description, the

' fragment, and the context. And, replace the
' offset placeholders in the description with
' values for the offsets of StartHMTL,

' EndHTML, StartFragment, and EndFragment.

' Offsets need to be zero-based when placed on

vbTextCompare)
Select Case nPos
Case 0

FragmentStart & Fragment
Case Else
nPos = InStr(nPos, Fragment,

Then
nPos + 1)

End If
End Select

' HTML fragment by looking for <body> tag.
nPos = InStr(l, Fragment, "<body", _

AP Data
If nPos > 0 And nPos < Len(Fragment) _

Fragment = Left$(Fragment, nPos) & _
FragmentStart & Mid$(Fragment,

Data

End Function

' clipboard, so subtract 1

' from each before injecting.

Data = Description & Fragment

Replace(Data, "aaaaaaaaaa", _

Format$(Len(Description), Fmt))

Fragment = "<htm1><body>" & vbCrLf & _ Data = Replace(Data, "bbbbbbbbbb", _
Format$(Len(Data), Fmt))

nPos = InStr(Data, FragmentStart) - 1

Replace(Data, "cccccccecee", _
Format$(nPos + Len(FragmentStart), Fmt))

nPos = InStr(Data, FragmentEnd) - 1

Data = Replace(Data, "dddddddddd", _
Format$(nPos,

' Return attributed string.

Htm1Described =

Fmt))

Data

Listing 1 This routine is useful when you build the descriptive header string for an HTML fragment. If you pass an entire HTML document, the
StartFragment tag is injected immediately following the <body> tag, and the EndFragment tag immediately before </body>. If you pass a
fragrﬁent rather than a complete document, the routine makes it minimally whole by the addition of <html> and <body> tag sets. Use the
ideas in this routine to construct variations for other scenarios easily.

ISynchronizelnvoke isn’t limited to Win-
Forms. For example, a Calculator class pro-
vides the Add() method for adding two
numbers, and it implements ISynchronize-
Invoke. A client makes sure the method
executes on the correct thread by calling
ISynchronizelnvoke.Invoke() (download
Listing A from the VSM Web site; see the
Go Online box for details).

You mightwant to be able to invoke the
call asynchronously, because it’s marshaled
to a different thread from that of the caller.
The BeginInvoke() and EndInvoke() meth-
odsletyou do this. You use these methods in
accordance with the general .NET asyn-
chronous programming model: Use Begin-
Invoke() to dispatch the call, and End-
Invoke() to wait or be notified about comple-
tion and collect returned results.

If’sworth mentioning that ISynchronize-
Invoke methods aren’t type-safe. A mis-
match in type causes an exception to be
thrown at run time, rather than a compila-
tion error. Pay extra attention when you use

VISUAL STUDIO MAGAZINE + FEBRUARY 2003 -

ISynchronizelnvoke, because the compiler
won’t be there for you.

Implementing ISynchronizelnvoke re-
quires you to use a delegate to invoke the
method dynamically using late binding.
Every delegate type provides the Dynamic-
Invoke() method:

public object DynamicInvoke(object[]
args);

In the abstract, you must post the method
delegate to the actual thread the object
needs to run on, and have it call Dynamic-
Invoke() on the delegate in Invoke() and
BeginInvoke(). Implementing ISynchron-
izeInvoke is a nontrivial programming feat.
The source files accompanying this article
contain a helper class called Synchronizer
and a test application demonstrating how
the Calculator class in Listing A can imple-
ment ISynchronizelnvoke using the Syn-
chronizer class (download the source code).
Synchronizer is a generic implementation

www.visualstudiomagazine.com

of 1Synchronizelnvoke. You can use Syn-
chronizer as-is by either deriving from it or
containing it as a member object, then
delegating your implementation of ISyn-
chronizelnvoke to it.

The key element of implementing Syn-
chronizer is using a nested class called Work-
erThread. WorkerThread has a queue of
work items. WorkItem is a class containing
the method delegate and the parameters.
Both Invoke() and BeginInvoke() add awork-
item instance to the queue. WorkerThread
creates a .NET worker thread, which moni-
tors the work-item queue. When the queue
has items, the worker thread retrieves them,
then calls DynamicInvoke() on the method.

A

« Work With HTML and
the Clipboard
My application needs to place HTML on
the clipboard, but I can’t figure out how to
do this so that other applications under-
stand that’s what it is. I've seen references to

41



QA

the HTML Clipboard Format (CF_HTML), but I can’t find the
definition for that constant. How should I proceed?

A:

L J

Using the CF_HTML clipboard format with the Windows clip-
board is a bit confusing, in part because it’s not a native clipboard
format; it’s a registered format, so it isn’t a constant at all, because its
value differs from system to system. You can obtain registered
clipboard-format values with a simple API call—RegisterClip-
boardFormat. The first time this function is called with a given
string, it returns a unique number in the range CO00-FFFF. Each
subsequent call that any process running on the system makes
returns the same value. The magic string to use for this format is
“HTML Format™:

Private Declare Function _
RegisterClipboardFormat _
Lib "user32" _
Alias "RegisterClipboardFormatA" _
(ByVal 1pString As String) As Long
Dim CF_HTML As Long
Const RegHtml As String = "HTML Format"
CF_HTML = _
RegisterClipboardFormat(RegHtml)

Only the thread that
creates the form can call
its event-handling
methods, because of the
primordial message loop.

You must construct a descriptive header and prepend it to the
data before you can place your HTML data onto the clipboard. This
header provides other applications with the description’s version
information, with offsets within the data where the HTML starts
and stops, and with information about where the actual selection
begins and ends. Conceptualize the selection by considering a user
who might select a portion of an HTML document or even an
element (such as a few rows in a table). Other portions of the page
(such as inline style definitions) might be required to render the
selection fully. You likely must supply more than the raw selection
to put HTML on the clipboard in its full context. A sample header
might look like this:

Version:1.0
StartHTML:000000258
EndHTML:000001491
StartFragment:000001172
EndFragment:000001411

Applications use the StartFragment and EndFragment attributes
to determine which data to paste, and they might or might not use the

42 VISUAL STUDIO MAGAZINE

remaining HTML to help format the selected portion. You must
inject HTML comments into the data to identify the selected area
further. Obviously, you must do this before you build the final header,
because the offsets won’t be stable otherwise. The opening/closing
comment tags for the selected data are “<!—StartFragment—>" and
“<l—EndFragment—s>", respectively (see Listing 1).

I don’t have enough room here to detail all of this header’s
aspects, so I'll hit a few highlights and refer you to the sample code
and further reading (see Additional Resources). You must keep
several critical points in mind. The offsets listed in the header are
zero-based, so you must adjust your string-manipulation routines
accordingly. Also, if you're reading as well as writing these headers,
you must assume that the number of digits is variable (for example,
Internet Explorer [IE] uses 9, and Word uses 10).

Finally, if you place only CF_HTML on the clipboard, applica-
tions such as Word and FrontPage don’t know what to do with it.
You must also supply a plain-text rendition of the stylized HTML
to the clipboard for these apps to behave as expected. Scads of tools
perform HTML-to-text conversions, or the extremely macho might
prefer to roll their own parsers. But, no Windows programmer
should ever have to hand-parse HTML again. You can call upon the
OS instead for this everyday task:

Public Function Html12Text(ByVal Data _
As String) As String

Dim obj As Object

On Error Resume Next

Set obj = _

CreateObject("htmlfile")

obj.0Open

obj.Write Data

Htm12Text = obj.Body.InnerText
End Function

Leveraging IE isn’t necessarily the quickest method for parsing
HTML, but the expediency it offers is a good tradeoft in this case.
—KEP.

Juval Léwy is a software architect and the principal of IDesign, a
consulting and training company focused on .NET design and .NET
migration. Juval is a Microsoft regional director for the Silicon Valley,
working with Microsoft on helping the industry adopt .NET. His latest
book is Programming .NET Components (O'Reilly & Associates).
Contact him at www.idesign.net.

Karl E. Peterson is a GIS analyst with a regional transportation
planning agency and serves as a member of the VSM Editorial
Advisory Board. Online, he's a Microsoft MVP and a section leader on
several DevX forums. Find more of Karl's VB samples at www.mvps.
org/vb. Reach him at karl@mvps.org.

Additional Resources

« “HOWTO: Add HTML Code to the Clipboard by Using Visual
Basic”: http://support.microsoft.com/default.aspx?scid=kb;en-
us;q274326

« “HTML Clipboard Format”: http:/msdn.microsoft.com/
workshop/networking/clipboard/htmiclipboard.asp

FEBRUARY 2003 www.visualstudiomagazine.com



